Câu ví dụ
- Định nghĩa này của tính khả vi phức có nhiều điểm chung với khả vi thực: nó tuyến tính và tuân theo quy tắc nhân, quy tắc chia, và quy tắc hàm hợp.[4]
- Tiếp tuyến tại A là giới hạn khi điểm B xấp xỉ hoặc có xu hướng tiến tới A. Sự tồn tại và độc nhất của đường tiếp tuyến phụ thuộc vào một độ trơn toán học nhất định, gọi là "tính khả vi".